

The Case for Using the Spherical Model to Calculate the

Interpolated Points in the Connectivity Software
Deployment Module

by G. Welles Still and James F. Nealon

ARL-TR-4373 February 2008

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

DESTRUCTION NOTICE⎯Destroy this report when it is no longer needed. Do not return it to
the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-TR-4373 February 2008

The Case for Using the Spherical Model to Calculate the
Interpolated Points in the Connectivity Software

Deployment Module

G. Welles Still and James F. Nealon
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

 February 2008
2. REPORT TYPE

 Final
3. DATES COVERED (From - To)

 October 2006 to September 2007
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 The Case for Using the Spherical Model to Calculate the Interpolated Points
 in the Connectivity Software Deployment Module

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

 84VVE1
5e. TASK NUMBER

6. AUTHOR(S)

 G. Welles Still and James F. Nealon (both of ARL)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

 U.S. Army Research Laboratory
 Survivability/Lethality Analysis Directorate
 Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4373

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

A new software package undergoing development through joint efforts by the Missile Defense Branch at Aberdeen Proving
Ground, Maryland, and the Communications Electronic Warfare Branch at Fort Monmouth, New Jersey, of the U.S. Army
Research Laboratory’s (ARL) Survivability/Lethality Analysis Directorate models and predicts the viability of communications
links between moving nodes. Interpolation calculations will be needed to predict the location of the moving nodes between
user-provided way points. The developers must decide which model of the earth to use as the basis of the calculations. Thus, a
comparison was made between the National Geodetic Survey-provided computer programs Forward an Inverse based on the
WGS84 Oblate Spheroid (OS) model, and a newly constructed program based on a Perfect Sphere (PS). The basis of the
comparison was computational accuracy and speed. For a way point separation of 100 km or less, the maximum PS and
WGS84 OS discrepancy was 1 meter⎯accurate enough for link budget applications. When Forward and Inverse were kept
intact and ran from a batch file, it took 30 times longer to do the same calculations as the PS model. When Forward and
Inverse were modified to compute efficiently, it took 1.5 times longer. To modify the OS codes took 2.5 times as long as it did
to write the PS code. Based on these results, it is recommended that the PS model for the earth be used.

15. SUBJECT TERMS

 great circle; interpolation; oblate spheroid; snapshot time; sphere; waypoint; WGS84

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
 G. Welles Still

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

 SAR

18. NUMBER
OF PAGES

 55 19b. TELEPHONE NUMBER (Include area code)

 410-278-3377
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables vi

Executive Summary 1

1. Introduction 3
1.1 Background ...4

1.2 Purpose ..4

1.3 Scope ...6

2. Methodology 6
2.1 Process...7

2.2 Procedure...7
2.2.1 FORTRAN Code Using the PS ...8
2.2.2 C++ Codes Using the OS ..9
2.2.3 MATLAB Scripts Using the OS ...10
2.2.4 FORTRAN Program Using the OS ...11

2.3 Platforms ...11

3. Analysis 12
3.1 Analysis for the Spatial Difference Between the OS- and PS-based Algorithms12

3.2 Analysis for the Special Problem ..17

4. Results 19

4.1 Spatial Differences Between the OS- and PS-Based Algorithms19

4.2 Computation Time...25

4.3 Special Problem...27

5. Conclusions 27
5.1 Computation Time...28

5.2 Latitude and Longitude Accuracy ...28

5.3 Code Writing and Code Modification Times ..28

5.4 The Special Problem of Section 3.2 ..29

6. Recommendations 29

iv

7. References 31

Appendix A. Listing of the Contents of the File Way.dat. 33

Appendix B. Listing of the Contents of the File Way1.crd. 35

Appendix C. Listing of the Contents of the File Way1.out. 37

Appendix D. Partial Listing of the Contents of the File Snap1.crd. 39

Appendix E. Partial Listing of the Contents of the File Snap1.out. 41

Appendix F. Partial Listing of the Contents of the File Snap2.out. 43

Acronyms 45

Distribution List 46

v

List of Figures

Figure 1. Modules of the connectivity software. ..3
Figure 2. Cross sections of an OS (in red) and a PS (in blue) ..5
Figure 3. Platform movement between two waypoints with snapshot times..................................7
Figure 4. Procedure for calculating the interpolated points with the PS model.8
Figure 5. How the C++ executable files forward.exe and inverse.exe were used to do the

interpolation. ..10
Figure 6. The process used in calculating interpolated latitude and longitude points via

downloaded Forward and Inverse MATLAB scripts..11
Figure 7. The FORTRAN listings were downloaded for Forward and Inverse and combined

to form a single executable program, test4.exe..11
Figure 8. The latitude-longitude coordinate system superimposed on the rectilinear

coordinate system...13
Figure 9. The platform paths and the distance between the points calculated at time t................14
Figure 10. Distance and angle between points at time t predicted by the OS and PS models......14
Figure 11. Figure 9 extended to a flat surface. ...17
Figure 12. The shortest path on the OS connecting two equatorial waypoints nearly opposite

each other goes closer to the poles than the equator. ...18
Figure 13. The xy cross section of the OS of figure 12. ...18
Figure 14. Results for interpolated points as calculated with the PS, the C++ version, the

MATLAB version, and the FORTRAN version of Forward and Inverse20
Figure 15. Difference between the spherically based calculations and the WGS84-based

calculations with horizontal axis of figure 14 multiplied by 160 and vertical axis by 8020
Figure 16. Slight difference between the WGS84-based MATLAB and FORTRAN begins to

reveal itself after extreme magnification of figure 15. ...21
Figure 17. Slight difference between the WGS84-based MATLAB and FORTRAN.22
Figure 18. Difference between results of the OS C++ computation and PS FORTRAN

computation..22
Figure 19. Maximum and average difference between the OS and PS algorithm as a function

of distance at 40 degrees north latitude..24
Figure 20. The maximum and average difference between the OS and PS algorithm as a

function of distance at 80 degrees north latitude. ..24
Figure 21. The maximum and average difference between the OS and PS algorithm as

function of distance at 0 degrees north latitude. ..25

vi

List of Tables

Table 1. The three different computing platforms used..12
Table 2. Computation times for OS- and PS-based algorithms on three platforms......................26
Table 3. The time necessary to write/modify codes so that they were able to calculate needed

interpolation points. ...27
Table 4. Summary of the results for special problem outlined in section 3.2...............................27

1

Executive Summary

A new software package undergoing development through joint efforts by the Missile Defense
Branch at Aberdeen Proving Ground, Maryland, and the Communications Electronic Warfare
Branch at Fort Monmouth, New Jersey, of the U.S. Army Research Laboratory’s (ARL)
Survivability/Lethality Analysis Directorate models and predicts the viability of communications
links between moving nodes. This connectivity software model consists of six modules: the
Deployment Module, the Propagation Module, the Antenna Module, the Noise Module, the Link
Budget Module, and the Connectivity Confidence Interval Module.

The first module to see development is the Deployment Module, which concerns itself with the
location of communications platforms as a function of time. This module queries the user for
locations of waypoints in terms of latitude, longitude, and altitude. This will be obtained from
time and an elevation database such as the Digital Terrain Elevation Data (DTED) (1) for ground
communications platforms or nodes. The module will then calculate the location of the moving
nodes for times between the waypoint times called “snapshot times”. For each snapshot time,
the location of every single platform will be calculated and recorded. We can then model the
node motion by playing back the interpolated snapshot positions much like rapidly projecting
successive frames from a motion picture.

At this juncture in time, the code’s developers face an important choice. When we make the
interpolated calculations for the platforms’ locations at the snapshot times, should the Deployment
Module use the World Geodetic System 1984 (WGS84) model of the earth, which assumes that it
is shaped like an oblate spheroid (OS) (2), or model of the earth as a perfect sphere (PS) (3)? The
argument favoring the OS is that it is a model which has been extensively verified and is widely
used (2). Software packages, such as Forward and Inverse (4), which are needed to do the inter-
polation calculations, are available free to the general public, thus bypassing the need to develop
significant portions of the Development Module. Alternatively, using the PS as the basis for cal-
culating the interpolation points would result in faster computations because the model is much
simpler. The snapshot locations will be accurate enough for the connectivity calculations done by
the subsequent modules.

Knowledge of just how accurate the PS-based calculations would be and how much computation
time is saved would allow the developers to make an informed choice as to which model to use.
Therefore, software based on the PS was written to calculate interpolated latitudes and longitudes.
The accuracy and computation time were then compared to Forward and Inverse calculated
longitudes and latitudes.

Three versions of Forward and Inverse were used. The first used executable C++ programs that
required a batch program and auxiliary programs to maintain data format. The second used

2

Matrix Laboratory (MATLAB)1 scripts, which required an additional script to oversee the
process and control the data format. The third involved modifying FORTRAN (Formula
Translator) source codes to combine Forward and Inverse into one program and altering some
aspects of the program to make it more computationally efficient. The programs were run on
three computation platforms: a 1-year-old Dell2 laptop, a 3-year-old Dell desktop, and an 8-year-
old ProGen3 laptop.

For waypoint separation of 647 km, a maximum difference between the PS- and OS-based
calculations was 29 meters. When the waypoint separation was reduced to 100 km, the maximum
difference was reduced to 1 meter. Past link budget studies (5) show that waypoint separations of
less than 100 km are typical. The best computation time for the OS-based software was the
modified FORTRAN Forward and Inverse program, which took 1.5 times longer than the PS-
based software on the Dell laptop. The longest computing time was the unmodified C++
programs, which took 30 times longer to compute than the PS-based program on the ProGen
laptop.

Because of the much greater computation time required for the WGS84-based OS codes and the
more-than-adequate accuracy of the PS-based calculations, it is recommended that the developers
use the PS as the basis for calculation of the interpolated snapshot points. In this study, only two
waypoints were considered. In a genuine deployment, many waypoints for many platforms will be
modeled, greatly increasing the computation time. For practical problems, the accuracy of the PS
will be within 1 meter, greatly exceeding the Levels 1 and 2 DTED standards (1). Modification of
the OS WGS84 FORTRAN programs to make them compute faster took 2.5 times longer than it
did to produce the PS-based program.

1MATLAB is a registered trademark of The MathWorks.
2Dell is a registered trademark of the Dell Computer Corporation.
3ProGen is a registered trademark of Reflex Nutrition Ltd.

3

1. Introduction

A new software package undergoing development through joint efforts by the Missile Defense
Branch at Aberdeen Proving Ground, Maryland, and the Communications Electronic Warfare
branch at Fort Monmouth, New Jersey, of the U.S. Army Research Laboratory’s (ARL) Sur-
vivability/Lethality Analysis Directorate models and predicts the viability of communications links
between moving nodes. The connectivity software is divided into six modules as illustrated in the
hypothetical graphical user interface in figure 1.

Figure 1. Modules of the connectivity software.

The Deployment Module models the locations and movements of the wireless network nodes. The
Propagation Module contains data to calculate the attenuation of radio signals between the nodes
attributable to atmospheric and terrain effects. The Antenna Module contains data concerning
modeled antennae, including the gain, loss, and electromagnetic (EM) radiation pattern. The Noise
Module computes receiver noise attributable to internal and external contributions, including EM
noise which includes cosmic background radiation, the earth’s thermal radiation, and jamming.
The Link Budget Module takes the data from the previous modules and calculates the wireless link

4

mean signal-to-noise (S/N) ratio for each communications node. The Connectivity Confidence
Interval (CCI) Module selects the appropriate standard deviation of the path loss associated with
each link and computes the probability of successful signal reception. The model manages the six
modules as they perform the calculations necessary to do the wireless network simulation.

1.1 Background

The Deployment Module is the first module undergoing development. This module tracks the
motion of communications nodes. The approach is to allow the user to establish the location
of a set of waypoints for each moving communication node in terms of latitude, longitude, and
elevation. (Elevation is read from a database in the case of ground nodes.) The user also specifies
waypoint arrival and departure information for each platform.

At certain times, the viability of the links between the moving nodes will have to be calculated.
To do the calculation, the location of the platforms must be known. Invariably, these snapshot
times will not correspond to the times when the platforms will be at their waypoints. Therefore, it
will be necessary to interpolate the platforms’ latitude, longitude, and elevation, based on a given
velocity, and altitude profile. The number of interpolations may be few or could number into the
hundreds for a single platform. Multiple platforms are expected to be portrayed; therefore, the
time and memory space required for calculations become important.

The important question facing the developers is “which model of the earth should be used to
calculate the interpolated points?” Computational time and geometric fidelity must both be
considered. Basically, two geometric models are available: the World Geodetic System 1984
(WGS84) oblate spheroid (OS) model (6) and the perfect sphere (PS) model (3). The WGS84 OS
is shaped like a flattened sphere; a cross section taken through a meridian line renders an ellipse
with a minor radius of 6,356,752.3142 m (measured from a pole to the earth’s center point), and
a major a radius of 6,378,137 m (measured from the equator to the earth’s center point) (7).
Alternatively, a cross section of the perfect sphere through either a meridian or the equator
produces a circle. Figure 2 shows the cross section of a constant meridian OS superimposed of
the cross section of a PS. The radius of the circle in the figure is chosen so that the PS surface
area will match the WGS84 OS surface area (8). This was done to show the difference in shape
between the PS and the WGS84 OS. The OS in the figure is much more elliptical, flattened, and
eccentric than a WGS84 OS to exaggerate the comparison with the sphere. In reality, the
flattening of the earth is not discernible to the naked eye.

1.2 Purpose

If the developers chose to use the WGS84 OS model as the basis for interpolating the platform
locations, much computation time would be required. For example, calculating the exact
circumference of an ellipse requires the summation of an infinite series (9). To be practical, the
series would have to be truncated, requiring many terms for every single snapshot point, and an
algorithm would have to be developed to determine how accurate the sum must be and how many

5

terms need to be summed. An interpolation on the surface of an OS requires doing only a portion
of a curve that will likely be more complicated than an ellipse.

Figure 2. Cross sections of an OS (in red) and a PS (in blue). (The
flattening of the OS in the figure is greatly exaggerated compared
to a WGS84 OS to show the difference between the OS and PS
earth models.)

Alternatively, an iterative process may be used (10), but it too would require many iterations per
snapshot point and an algorithm to decide what is accurate enough and how many iterations are
necessary. A third alternative involves using programs such as Forward and Inverse (offered as
FORTRAN, C++, and MATLAB [Matrix Laboratory] listings and executable files by the
National Geodetic Survey [NGS]) (11), which would still require multitudes of calculations for
every snapshot point.

If the developers choose to use a PS as the interpolation basis, the calculation would be much
faster; each snapshot point requires the calculation of only a single expression as opposed to a
many-termed or multi-stepped iteration. Furthermore, a member of the development team has
used the PS model in a previous analytical effort (5). Should any difficulty encountered in the
development of modules beyond the Deployment Module be traced to that module, a resident
expert in the PS model would be available as a problem-solving resource.

6

Therefore, if the OS is used, the location of the interpolated points will be more accurate, but if
the PS is used, less computation time will be required. This is an important consideration in that
the Deployment Module will be the first executed, so the less computation time used, the better.
The importance of saving computation time becomes apparent in that the interpolated latitude/
longitude/altitude points must be computed many times for a multitude of waypoints, for a
multitude of platforms.

Invariably, this discussion raises four specific questions on the part of the developers deciding
between the OS and PS models: 1) How much more computation time would be required to use
the WGS84 model? 2) How much accuracy is lost if the PS model is used? 3) How much time
would it take to do the coding to accommodate the OS and PS model? 4) is there a particular
problem that either of these models can solve which the other cannot? The purpose of performing
this study is to perform a typical interpolation problem with the use of the two models so that
quantitative data will be available to support the developers’ choice of an earth model.

1.3 Scope

The comparison between the models was done at median sea level. The extant two-dimensional
(2-D) versions of Forward and Inverse were used to allow for compatibility with the older C++
version of the codes. Furthermore, no C++ version of Forward and Inverse in three dimensions
(3-D) is available at this time. These programs concern locations on the surface of an OS. Newer
versions of Forward and Inverse (FORTRAN source code) address the 3-D solutions, only as line-
of-sight or straight-line distances and sea-level distances, which is insufficient for modeling non-
sea-level plat-form motion. Although the PS could address motion at any elevation, sea level was
used to make the comparison consistent. The earlier 2-D versions of Forward and Inverse compute
great circle distances at sea level. The 3-D versions also compute this distance, in addition to the
line-of-sight distance for points that are higher than sea level.

2. Methodology

The process used is to calculate a set of interpolated points between two waypoints with both
models. Then, the time needed to write or modify the software to do the calculations, the com-
putation time needed for various computer platforms to do the computations, and the latitude/
longitude results calculated for the OS and PS models are compared. Several sets of waypoints
with various distances between them were considered for three latitudes. The C++ version of
Forward and Inverse can only calculate distances along the surface of an WGS84 OS, so only non-
elevated paths were compared. The particular details of the methodology are enumerated next.

7

2.1 Process

The process represented is shown in figure 3. The assumptions that govern the motion are that the
platform 1) moves at sea level, 2) moves along the shortest path between the two points according
to the model (PS or OS) used to calculate the interpolated points, and 3) starts at the first point at 0
meters per second and accelerates at a constant rate until it reaches the second point traveling at 20
meters per second (or 48 mph). The final assumption is that the position between the two points is
calculated every 10 seconds. Comparison is then made of the resultant interpolated points
predicted by the OS and PS models.

Figure 3. Platform movement between two waypoints with snapshot times.

2.2 Procedure

It is assumed that the path traveled by the platform is a great circle (12) as distinct from a rhumb
line or loxodrome (13). A rhumb line crosses all meridians at the same angle, whereas a great
circle crosses different meridians with different angles. Although used extensively in navigation, a
rhumb line is not (unlike a great circle) the shortest distance between two points. Although nearly
indistinct from a great circle for short distances near the equator, a rhumb line’s spiral curvature
becomes evident for long distances near the poles. Alternatively, a great circle traces the shortest
path between two points for all latitudes and all distances.

The procedure involved the method used to incorporate the OS model and the PS model to do the
calculations. The input file for all processes (way.dat which is listed in appendix A) is an ASCII

8

(American Standard Code for Information Interchange) file containing the latitudes, longitudes,
elevations, and times for the two waypoints. Four processes took the information from way.dat
and calculated the interpolated points.

2.2.1 FORTRAN Code Using the PS

The first involves using the PS model and is illustrated in figure 4. Test.exe is a FORTRAN
program written by the author to calculate the interpolated points from the points in way.dat. It
works by using the fact that a great circle is the shortest path on the surface of the sphere between
the two points.

Figure 4. Procedure for calculating the interpolated points with the PS model.

The equation for a great circle on a sphere is

 tan φ = tan φmax cos (θ – θ0) (1)

where φ is the latitude, θ is the longitude, and φmax and θ0 are respectively the latitude and
longitude of the point on the great circle which is farthest north from the equator. By knowing
two points on the great circle (φ1, θ1) and (φ2, θ2), one can calculate φmax and θ0.

Substituting each set of points into equation 1 to get two equations, then eliminating φmax, the
value for θ0 is found to be

 θ0 = Arc tan [(tan φ1 cos θ2 – tan φ2 cos θ1) / (tan φ2 sin θ1 – tan φ1 sin θ2)]. (2)

By substituting (φ2, θ2) into equation 1 and using the value for θ0 obtained in equation 2, we find
the value for φmax

 φmax = Arc tan [tan φ2 / cos (θ2 – θ0)]. (3)

φmax and θ0 are then used to transform the waypoints (φ1, θ1) and (φ2, θ2) to a primed coordinate
system so that they are both on the primed equator:

 θ1’ = Arc cos [cos (θ1 – θ0) cos φ1 / cos φmax] (4a)

 θ2’ = Arc cos [cos (θ2 – θ0) cos φ2 / cos φmax] . (4b)

Having read the times t2 and t1 corresponding to the waypoints from the input data file way.dat and
using the fact that the waypoints are both on the primed equator, we calculate the arc acceleration
α with this equation:

 α = 2 (θ2’ – θ1’) / (t2 – t1)2. (5)

9

Since the interpolated times ti have already been selected as occurring once every 10 seconds, the
corresponding primed interpolated latitude θi’ is calculated with

 θi’ = θ1’ + α (ti – t1)2 / 2. (6)

The primed interpolated longitude is then converted back to the original coordinate system longi-
tude and latitude with φmax and θ0 once again:

 φi = Arc sin (cos θi’ sin φmax), (7a)

 θi = Arc cos (cos θi’ cos φmax / cos φi’) + θ0. (7b)

The result, 6,473 interpolated sets of latitudes, longitudes, elevations (kept at 0 for this study), and
times, were then stored in a second ASCII file called “snap.out”. The time for computation was
then measured with a stopwatch as indicated by the clock in figure 4.

We calculated the arrival time of the platform (64717.85189 seconds) in figure 3 by assuming that
1) the platforms starts from rest at time t = 0, 2) the platform accelerates at a constant rate a, and
3) the arrival velocity is 20 meters per second. The distance between the points was calculated
from their latitudes and longitudes given in figure 3. Two equations of motion, D = a t2/ 2 and
vfinal = a t, were then used to solve for the acceleration a and the time t.

2.2.2 C++ Codes Using the OS

The second procedure used two executable C++ files, Forward and Inverse, both available from
the U.S. Army Topographic Engineering Center (TEC) since November 1995 (14). Forward
calculates the latitude and longitude at sea level, given the starting point latitude and longitude, a
bearing, and a sea-level distance. Inverse calculates the bearing and distance between two points,
given their latitudes and longitudes. Both offer the user a choice of several models of the earth; we
chose the WGS84 OS.

These particular executable files originated as C++ programs. The way they were used is outlined
in figure 5. We begin with the same ASCII file (way.dat) that the PS FORTRAN file test.exe used.
Although the waypoint latitudes and longitudes were contained in way.dat, the information had to
be rendered in a format that Inverse.exe could understand. The short FORTRAN file Test1.exe
took the waypoint latitude and longitude information from wat.dat and wrote it to a file in a format
that Inverse.exe understood called “way1.crd”. Inverse.exe then calculated the distance and bearing
between the two waypoints and recorded them in a file called “way1.out”. Sections of these files
are included in appendices A through F.

The process used was to take the beginning and ending times, ti and tf from way.dat, the distance d
from way1.out, and use them to calculate the acceleration constant “a” via the equation

 a = 2 d / (tf – t1)2. (8)

10

Figure 5. How the C++ executable files forward.exe and inverse.exe were used to do the interpolation.

Then, using the fact that the interpolation time ti occurred every 10 seconds, we calculated the
acceleration a interpolated distances di with the formula

 di = a (ti – t1)2 / 2. (9)

The bearing was read from way1.out, with the interpolated distances, and the latitude and longi-
tude of the first waypoint and stored in the file snap1.crd. Forward.exe then used the first way-
point longitude, latitude, bearing, and interpolated distances to calculate 6,473 interpolated points
and store the information in a file called “snap1.out”. Test3.exe then read snap1.out and put the
interpolated latitudes, longitudes, elevations (0 meters for this study) and times in a file called
“snap2.out”. This last step ensured that the format of the interpolated points matched the format of
the file snap.out, calculated with the PS model. All the executables were run with the use of a batch
file called interp.bat. The calculation time was measured with a stopwatch. For readers wishing to
know more details of the format of the ASCII files described in figure 5, excerpts of the files
way.dat, way1.crd, way1.out, snap1.crd, snap1.out, and snap2.out are included in the appendices.

2.2.3 MATLAB Scripts Using the OS

A similar process that employed downloaded MATLAB scripts of Forward (15) and Inverse (16)
based on the OS WGS84 model were also used. Figure 6 shows the process. It was necessary
for the authors to construct an additional script for flow control and to produce the output file
path_conta.txt in a format identical to snap.out and snap2.out. Then forward was run once to get
the forward bearing and the distance between the waypoints. Using the azimuth, we re-calculated
the distance to correspond to the interpolated time under constant acceleration, and we calculated
the latitude and longitude by calling Inverse repeatedly. Additional scripts placed the data in the
output file path_conta.txt and ensured that the data in path_conta.txt data had a format identical to
snap.out and snap2.out. This operation was timed with MATLAB timing routines and was also
timed with a stopwatch.

11

Figure 6. The process used in calculating interpolated latitude and longitude points via downloaded
Forward and Inverse MATLAB scripts.

2.2.4 FORTRAN Program Using the OS

NGS provides FORTRAN listings for Forward and Inverse (17). Rather than use the programs
intact, the approach this time was to modify the listings and splice the two programs together to
form one executable file, as shown in figure 7. Additionally, the “do” loops for repeatedly using
Inverse were chosen so as to define the bearing only once, and the number of output was reduced
so as to minimize the computation time needed to calculate the latitudes and longitudes. The
program was also modified to calculate the distance, with an assumed constant acceleration. The
two listings were combined and then compiled to form a single executable test4.exe. The results
were placed in the file snap3.out. The timing for this operation was also done with a stopwatch.

Figure 7. The FORTRAN listings were downloaded for Forward and Inverse and combined to form a single
executable program, test4.exe.

2.3 Platforms

The interpolation programs were also ran on a variety of platforms (see table 1). They consisted of
an 8-year-old ProGen laptop running Windows4 98, A 3-year-old desktop running Windows 2000,
and a 1-year-old Dell laptop running Windows XP. Only the Desktop ran MATLAB, while all
three machines ran the FORTRAN and C++-based programs. The reason why three platforms
were used was to establish the effect that processor speed and model difference (OS and PS) had
on computation time.

4Windows is a trademark of the Microsoft Corporation.

12

Table 1. The three different computing platforms used.

Computer
Manufacturer

Age (years) Operating System RAM Processor

ProGen 8 Windows 98 64 MB Pentium II
Della 3 Windows 2000 1 GB 2.2-GHz single
Dell 1 Windows XP 1 GB T2400 @ 1.83 GHz

aMATLAB platform

3. Analysis

The analysis consisted of tracking the running time of the calculations done with the algorithms,
based on the OS and PS models. It also consisted of recording the time required to code the
algorithms. The bulk of the analysis consisted of comparing the spatial difference between the
interpolated longitudes and latitudes and considering a special problem where the waypoints are
on the equator but nearly 180 degrees apart.

3.1 Analysis for the Spatial Difference Between the OS- and PS-based Algorithms

We begin with a short derivation of the equations used for the analysis. Figure 8 shows the
superposition of a latitude/longitude coordinate system with a rectilinear coordinate system; φ is
the latitude, which varies from -90 to 90 degrees. The designation “north latitude” would indicate
a positive value, while “south latitude” indicates a negative value; θ is the longitude, varying from
-180 to + 180 degrees. “East” corresponds to positive latitude, while “West” connotes negative
latitudes. R is the distance from the earth’s center and is the sum of the mean sea level and the
elevation. R is always positive and can have a value between zero and infinity.

The superimposition of a 3-D rectilinear coordinate system on the latitude and longitude system
aids the calculation of distance. The x axis starts at the earth’s center point and passes through the
point where the prime meridian (0 degrees longitude) and equator (0 degrees latitude) intersect.
Likewise, the y axis starts at the center point but goes through the point at the intersection of the
equator (0 degrees latitude) and 90 degrees east longitude. The z axis begins at the earth’s center
as well but passes through the north pole (90 degrees latitude).

To convert from the latitude/longitude coordinate system to the rectilinear system involves
employing simple geometric relationships. In the vertical right triangle, the side opposite the
latitude angle φ in figure 8 is the z coordinate.

13

Figure 8. The latitude-longitude coordinate system superimposed
on the rectilinear coordinate system.

Expressed in terms of the latitude-longitude system, this becomes

 z = R sin φ. (10)

The side adjacent to the latitude angle φ becomes the hypotenuse for the two right triangles in the
x-y plane shown in figure 1, with a value of R cos φ. The side opposite the longitude angle θ is
the y coordinate, which in terms of R, φ, and θ is

 y = R cos φ sin θ. (11)

The side adjacent to the latitude angle φ is the x coordinate, rendered

 x = R cos φ cos θ. (12)

Figure 9 shows the platform paths that were computed based on the two models. At a given time, t,
the location of the moving platform will be computed at two different points. We wish to compute
the distance between them. Figure 10 shows a cross-sectional wedge showing the straight line
distance Δ and the angle δ between the points computed by the OS and PS models at time t. As is
evident by figure 10, the straight line distance Δ is related to the great circle distance by way of the
angle δ by sin (δ/2) = Δ/(2 R). The great circle distance is R δ. We suspect that the distance
between the points is on the order of hundreds of kilometers. The radius of the earth is about 6300
kilometers. Since the radius of the earth is about 1000 times larger than Δ or R δ, δ becomes very
small, so we may employ the well-known asymptotic relationship sin (δ/2) ≈ δ/2 = Δ/(2 R) or put
another way, the great circle distance δ R = Δ, the straight line distance. If we find the straight line

14

distance, we have found the great circle distance. Using data presented from the Results section,
we will justify this assumption.

Figure 9. The platform paths and the distance between the points calculated at time t.

Figure 10. Distance and angle between points at time t predicted by the OS and PS models.

If we know the rectilinear coordinates of the two points, the distance between them is calculated
with the sum of the squares of the differences of the x, y, and z coordinates:

 Δ2 = (xOS – xPS)2 + (yOS – yPS)2 + (zOS – zPS)2. (13)

We do not have the rectilinear coordinates, but we do have the latitudes, longitudes, and the radii
of the OS and PS. With equations 10, 11, and 12, 13 becomes

()
()
()

22
OS OS OS PS PS OS

2
OS OS OS PS PS OS

2
OS OS PS PS

R cos cos R cos cos

R cos sin R cos sin

R sin R sin .

φ θ φ θ

φ θ φ θ

φ φ

Δ = − +

− +

−

 (14)

Next, the squares for each term are evaluated and listed, rendering equation 14 as

15

2 2 2 2
OS OS OS OS OS OS PS PS PS

2 2 2 2 2 2
PS PS PS OS OS OS

2 2 2
OS OS OS PS PS PS PS PS PS

2 2 2 2
OS OS OS OS PS PS PS PS

R cos cos 2R cos cos R cos cos

R cos cos + R cos sin

2R cos sin R cos sin R cos sin

R sin 2R sin R sin R sin .

φ θ φ θ φ θ

φ θ φ θ

φ θ φ φ φ θ

φ φ φ φ

Δ = − +

−

+ +

− +

 (15)

Applying the well-known trigonometric identity sin2 α + cos2 α = 1 (18, p 433) twice, it is easy to
show that cos2 φ cos2 θ + cos2 φ sin2 θ + sin2 φ = 1. This reduces six terms of equation 15 to two.
With some re-grouping of the remaining three terms, equation 15 becomes

()2 2 2
OS PS OS PS OS PS OS PS OS PS OS PSR R 2R R cos cos cos cos sin sin sin sinφ φ θ θ θ θ φ φΔ = + − + +⎡ ⎤⎣ ⎦ (16)

Next, we employ another well-known trigonometric identity: cos (A + B) = cos A cos B - sin A
sin B (18, p 434). Application of this identity further simplifies equation 16 to read

 ()2 2 2
OS PS OS PS OS PS OS PS OS PSR R 2R R cos cos cos sin sinφ φ θ θ φ φΔ = + − − +⎡ ⎤⎣ ⎦ . (17)

From figure 10, we reasoned that if Δ is small compared to the ROS, or RPS, then δ must be small,
so that sin δ ≈ δ (19). Since θOS - θPS is the longitudinal component of δ, it must be smaller than δ.
Then the angle θOS - θPS must also be a very small angle. Expanding the term cos A into a Taylor
series, if A is a small angle, we may limit the expansion to the first two terms and ignore the rest of
the series with little loss in accuracy, so that cos A ≈ 1 – A2/2 (18, p 736). Applied to equation 17,

 2Δ ≈ ()2
OS PS OS PS2 2

OS PS OS PS OS PS OS PS

cos cos
R R 2R R cos cos sin sin .

2
φ φ θ θ

φ φ φ φ
⎡ ⎤−

+ − − +⎢ ⎥
⎢ ⎥⎣ ⎦

(18)

Again, using the identity cos (A + B) = cos A cos B - sin A sin B, equation 18 becomes

 2Δ ≈ () ()2
OS PS OS PS2 2

OS PS OS PS OS PS

cos cos
R R 2R R cos .

2
φ φ θ θ

φ φ
⎡ ⎤−

+ − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (19)

If δ is small, then the vertical component φOS - φPS must be smaller. Re-applying the relationship
cos A ≈ 1 – A2/2, equation 19 simplifies a bit more:

 2Δ ≈ () ()2 2
OS PS OS PS OS PS2 2

OS PS OS PS

cos cos
R R 2R R 1 .

2 2
φ φ φ φ θ θ⎡ ⎤− −

+ − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (20)

The polar radius and the equatorial radius of the earth differ by 0.3%. Since the PS radius is
between the equatorial and polar radius of the OS, it follows that ROS and RPS differ by even less
(see figure 2). The OS radius at the latitude for which this study was performed (39 degrees north
latitude), the OS and PS radius must be very nearly equal, so that ROS ≈ RPS. Applying this to
equation 20, we reach the equation with which the difference calculation was performed:

16

 () ()2 22 2 2
OS OS OS PS OS PSR cos φ θ θ φ φ⎡ ⎤Δ = − + −⎣ ⎦ . (21)

After the codes calculated the latitude and longitude corresponding to platform location at a
particular interpolated time, the distance between the results predicted by the PS and OS models
were calculated and then plotted via equation 21. Δ is the difference in meters between the two
interpolations; φOS and θOS are the latitude and longitude reported for the OS model, and φPS and
θPS are the PS latitude and longitude. For equation 21 to report the correct results, φOS, φPS, θOS,
and θPS must be in radians.

The cross section of the WGS84 OS model of the earth is an ellipse (21). Thus, ROS becomes a
function of the latitude φOS. Therefore, the exact equation for the radius must be the equation for
an ellipse in polar coordinates, namely,

2 2

OS OS
2 2 2

OS

cos sin1
R A B

φ φ
= + (22)

where ROS is the radius of the earth at latitude φOS, A is the equatorial radius in meters (6378137),
and B is the polar radius in meters (6356752.3142) (7).

The difference between the OS and PS calculated points of figure 9 may be extended to a flat
surface. Because the distance Δ is small compared to the earth’s radius, the area around the path
difference line may be approximated as a flat surface, as has been done with figure 11. To obtain
the distance between points Δ, we employ the Pythagorean theorem, h2 + v2 = Δ2 (20). The latitude
distance, v, is simply the earth’s radius at the point times when the angle latitude changes, or ROS
(φOS - φPS). The longitude distance h is also the earth’s radius times the longitude change, but it
must be multiplied by the cosine of the latitude. That is because the distance for a given longitude
difference increases as the latitude decreases. (Consult figure 8 and equations 11 and 12.) There-
fore, h = ROS (θOS - θPS) cos φOS. Making the substitutions for h and v in the Pythagorean theorem,
we arrive at an expression for the distance Δ:

 () ()2 22 2 2
OS OS OS PS OS PSR cos φ θ θ φ φ⎡ ⎤Δ = − + −⎣ ⎦ . (23)

This expression is identical to equation 21, giving us confidence that this formula correctly calcu-
lates Δ2.

17

Figure 11. Figure 9 extended to a flat surface.

3.2 Analysis for the Special Problem

The greatest difference between the interpolated longitude and latitude points predicted by the OS
and PS models should be for the special case where the two waypoints are on the equator and very
nearly 180 degrees apart. This situation is depicted in figure 12. The two waypoints on the equa-
tor are where the line y = y0 and z = 0 intersects the OS. This line through the OS connecting the
two waypoints on the OS surface is parallel to the x axis a consistent perpendicular distance y0
from the x axis, and lies in the xy plane. It is also perpendicular to the y axis and skew to the z
axis. Because the OS is flattened at the poles, the arc of shortest distance on the OS which
connects the points travels closer to the pole than to the equator. To see just how close, the
situation should be viewed in cross section of the yz plane, as shown in figure 13.

The cross section taken through the poles is an ellipse (21) with equation 24 (22):

 1 = y2 / a2 + z2 / c2 (24)

where a is the equatorial radius and c is the polar radius. The shortest path line on the surface of
the OS intersects the cross-sectional ellipse at a point fairly near the pole. The straight line con-
necting the waypoints intersects the y axis at the point (0,y0,0). These two ponts are separated by
a distance D. The square of the distance D is represented by the equation

 D2 = (y - y0)2 + z2, (25)

which can be rendered in terms of a single variable after we solve the elliptical cross-sectional
equation (equation 24) for z2 and substitute into equation 25:

 D2 = (y – y0)2 + c2 (1 - y2 / a2). (26)

18

Figure 12. The shortest path on the OS connecting two equatorial waypoints nearly

opposite each other goes closer to the poles than to the equator.

Figure 13. The xy cross section of the OS of figure 12.

It follows that the shortest path line along the surface of the OS should be the line closest to the
straight line intersecting the waypoints. Therefore, the point on the ellipse where the shortest mean
sea level path intersects the cross section should be a point on the ellipse that is closest to (0, y0, 0).
This point should have a value for y so that the distance squared D2 is minimized. The value for y
is easily found if we take the y derivative of equation 26, and set it to zero. The answer is

 y = y0 / (1 – c2 / a2). (27)

The greatest value y can have is the equatorial radius a, so substituting that value in equation 27,
and solving for y0 renders the maximum value possible for y0.

19

 y0 = a (1 – c2 / a2). (28)

For two points on the equator, the line connecting them on the surface of an OS does NOT follow
the equator if they are within 2 y0 of being 180 degrees opposite each other. If they are closer than
that, the closest path lies on the equator. Plugging in the WGS84 values for the earth, for a =
6,378,137.0 meters, and c = 6,356,752.314 245 m (6), we find y0 = 42,697.67 meters.

Therefore, if two waypoints on the equator are between 180 and 179.2329 degrees apart in
longitude, the shortest path connecting them is NOT along the equator. Any software calculating
the interpolated points for this special circumstance should provide interpolated points that are not
on the equator. Note that by symmetry, the shortest mean sea level path on an OS also may pass
by the southern pole as well as the northern pole. Conversely, the path connecting two points on
the equator, which are less than 179.2329 degrees apart, has a shortest mean sea level path on the
equator, and software calculating the interpolated points should provide points that are on the
equator.

4. Results

The results are presented in three sections. The first section compares the spatial differences for
the interpolated points calculated with the use of algorithms based on the WGS84 OS model and
the PS model. The second section compares the computation time required for the various pieces
of software on the available platforms and the time required for the coders to write the code. The
final section is devoted to the results calculated for two waypoints on the equator but nearly
opposite each other, as outlined in section 3.2.

4.1 Spatial Differences Between the OS- and PS-Based Algorithms

The results for the calculations made between the C++ OS software, the FORTRAN OS software,
the MATLAB OS software, and the FORTRAN PS software are shown in figure 14. Even though
only one line is shown in the graph, the four plots are so close to each other that they appear as a
single line. Note that the bearings of all the plots change with distance, consistent with a shortest
path sea level route.

At a resolution allowing visibility of the entire path, all four processes agree. The small separation
between the PS FORTRAN calculations and the three sets of OS calculations can be seen when the
vertical axis is expanded by a factor of 80 and the horizontal scale by a factor of 160. Figure 15
shows the results. The portion of the graph that displays the greatest difference between the three
OS-based software calculations and the PS-based calculation is displayed in this rather limited
window. The three WGS84-based calculations appear identical, even with this very high level of
magnification because the same base algorithms were used for the three OS-based codes.

20

Figure 14. Results for interpolated points as calculated with the PS, the C++ version, the MATLAB

version, and the FORTRAN version of Forward and Inverse. (The graph shows only one line
because the differences between them are too small to be seen at this scale.)

Figure 15. Difference between the spherically based calculations and the WGS84-based calculations

with the horizontal axis of figure 14 multiplied by 160 and the vertical axis by 80. (A window
is placed over those parts of curve where the differences are greatest.)

21

Some slight difference between the three OS-based calculations becomes more apparent if the
horizontal axis is expanded by an additional factor of 8-1/3 and the vertical axis by an additional
factor of 1-2/3. This has been done in figure 16, where a slight difference between the MATLAB
and FORTRAN versions of Forward and Inverse begins to emerge in the upper right corner and
center of the graph.

To report the difference between the various OS- and PS-based codes in figures 14, 15, and 16, it is
not enough to give the separation distance between the curves. Instead, the distance between each
snapshot location point for identical interpolation times must be made on a point-by-point basis.
Thus, the differences presented in figures 17 and 18 are shown as a function of time. Therefore, a
comparison between the differences of the latitudes and longitudes as predicted with the C++ and
FORTRAN versions of Forward and Inverse with WGS84 parameters using equations 21 and 22
reveals that the maximum difference is very close to 1 meter. The comparison is shown in
figure 17. The jagged nature of the graph suggests that the difference between the C++ and
FORTRAN programs is attributable to rounding error.

Figure 16. Slight difference between the WGS84-based MATLAB and FORTRAN begins to reveal
itself after extreme magnification of figure 15.

22

Figure 17. Slight difference between the WGS84-based MATLAB and FORTRAN. (Graph’s
jaggedness suggests that small difference is attributable to rounding error.)

Figure 18. Difference between results of the OS C++ computation and PS FORTRAN
computation. (Differences reported are time based.)

23

The differences between the C++ WGS84 OS and the FORTRAN PS results are much greater and
are shown in figure 18. The smoothness of the overall envelope of the curve suggests that the
difference between the two (calculated via equations 21 and 22) is attributable to the genuine
difference in algorithm. Rounding plays some, although a greatly reduced, role in the difference of
figure 18, as seen by the slight saw-tooth jaggedness superimposed on the smooth waveform.

The maximum difference between paths shown in figure 18 is less than 30 meters. The ratio of 30
meters to the earth’s radius (6.3 x 106 meters) is a very, very small number⎯about 4.8 x 10-6.
Thus, the assumption (that the distance between paths is small compared to the earth’s radius) used
to derive equations 21 and 23 is justified.

The 29-meter difference between the OS and PS model is far greater than the 1-meter difference
between the OS FORTRAN and C++ models, both of which employ an algorithm based on the
WGS84 OS model. Because the difference between the PS- and OS-based software is large
compared to the difference between the WGS84-based OS models and because our purpose is to
compare the OS and PS models, our inclination is to regard all the differences between the various
OS models as zero.

The distance between the two waypoints represented by figure 18 is roughly 647 km. More
comparison runs were made comparing the difference between the PS- and OS-based algorithms
at distances of 400 km, 200 km, 100 km, 80 km, 60 km, 40 km, 30 km, 20 km, and 10 km. The
greatest distance between two points and the average distance (the distance difference totaled for
all points and divided by the number of points) between the interpolated longitudes and latitudes
are shown in figure 19.

The curve in figure 19 shows that the longer the path, the greater the average and maximum
difference between the OS and PS algorithms. The parabolic shape of the plot indicates that the
difference between the OS and PS algorithms as a fraction of the distance between the waypoints
also increases with distance. This is expected since the shorter the path along the OS, the closer it
comes to being the arc of a circle.

The difference should be reduced if the comparison of the plot in figure 19 is made at a higher
latitude. Consider that the cross section of an OS is an ellipse; the change in radius along the arc
length of an ellipse is zero at the points where the major and minor radii intersect the ellipse. A
circle (the cross section of a perfect sphere) has no change in radius along the path. So the closer
to the poles and equator the path, the more it should resemble a circle and the less the difference
between the latitudes and longitudes predicted between the OS and PS models. Figure 20 confirms
our suspicions for the very high latitude of 80 degrees: the maximum of 16 meters is somewhat
over half the 600-meter path length difference of 26 meters at the latitude of 40 degrees.

24

Figure 19. Maximum and average difference between the OS and PS algorithm

as a function of distance at 40 degrees north latitude.

Figure 20. The maximum and average difference between the OS and PS algorithm

as a function of distance at 80 degrees north latitude.

25

At the equator, the difference should be even smaller because unlike the pole, the difference in
curvature is not near zero but exactly equal to zero for movement in the direction of the equator.
As we move along a line of constant latitude, the change in radius is very nearly zero at the equa-
tor, so the region close to the equator on an OS is most like that of a PS. The graph of figure 21
shows the least amount of difference between the sets of interpolated latitudes and longitudes
calculated according to the OS and PS models. For a waypoint distance of 600 km, the maximum
difference is a mere 3 meters.

Figure 21. The maximum and average difference between the OS and PS algorithm as
function of distance at 0 degrees north latitude.

4.2 Computation Time

The computation times required for the various software packages on the available platforms are
shown in table 2. The times reported in this table were the times necessary to compute the data
shown in the graphs in figures 15 to 19. Interpolated points (6,473) were calculated via the three
platforms: a Dell desktop, a Dell laptop, and a ProGen laptop. All the platforms calculated the
interpolated latitudes and longitudes using the two OS-based software packages: the C++ pro-
grams Forward and Inverse, and the FORTRAN programs Forward and Inverse. All the platforms
calculated the PS-based FORTRAN program. Only the Dell desktop had the MATLAB software
installed, so it was the only platform that did the computations with the downloaded OS MATLAB
versions of Forward and Inverse.

26

Table 2. Computation times for OS- and PS-based algorithms on three platforms.

Forward/Inverse (OS) Model

Computer

C++ Batch File MATLAB FORTRAN
Sphere (PS)
FORTRAN

ProGen 49 -- 3.39 1.5
Dell Desktop 6 3.7 0.94 0.61
Dell Laptop 6 -- 0.91 <0.5

Times are given in seconds. The entry under “Sphere (PS) FORTRAN” and “Dell Laptop” was too short to obtain an
accurate measurement.

As expected, the ProGen laptop, the oldest platform, reported the slowest speeds. The C++ batch
file took 49 seconds, the FORTRAN versions of Forward and Inverse took 3.39 seconds, while the
PS-based FORTRAN code needed only 1.5 seconds. The next newest machine, the Dell desktop,
took 6 seconds to run the C++ batch file, 3.7 seconds to run the MATLAB scripts, 0.94 second to
run the OS FORTRAN Forward and Inverse files, and only 0.61 second to run the PS FORTRAN
file. The newest computer, the Dell laptop, took the least amount of time to run the programs: 6
seconds for the C++ batch file, 0.91 second for the FORTRAN Forward and Inverse files, and less
than 0.5 second to run the PS-based FORTRAN program. The time to run the PS-based program
(as were all the times) was measured with a stopwatch. The PS-based FORTRAN program ran so
quickly, there was not quite enough time to start and then stop the stopwatch, so the upper boun-
dary time is reported. Consistency in the ranking of the running time was also required by each
program. On all the platforms, the C++ batch file took the longest, the MATLAB scripts were the
next quickest, then the OS FORTRAN version of Forward and Inverse, while the FORTRAN
version of the PS-based program ran the fastest.

One point to be noted in the time comparison is that three calculating modes are in use. The modes
are a batch file for executable Windows/DOS programs; interpreted files inside a MATLAB
environment run as an additional operation and execution of a single program. It may be possible
to accelerate the run times for the C++ batch files if we perform the same type of recompilation as
was done for FORTRAN source code. The MATLAB codes may also be combined and could be
exported as a separate executable program. These may be useful for ensuing investigations.

The time required to write/modify the programs to calculate the interpolated points is presented in
table 3. The MATLAB modification of Forward and Inverse took the least amount of time (1/4 of
1 day) because the scripts for Forward and Inverse were imported from the internet. The manipu-
lating and modifying scripts were also MATLAB scripts, so the MATLAB version was the easiest
to assemble. The C++ batch file had to use executable versions of Forward and Inverse, which
made it necessary to write a comprehensive, albeit simple, manipulative batch file. The batch file
was the next longest to write at 1 day. The PS FORTRAN code had to be written from scratch.
Even though no scripts were available to make any of the computations, the PS model was simple
enough that it required only 2 days to write and de-bug the program. Using the FORTRAN
listings of Forward and Inverse required the most time: 5 days. This was because attempts were
made to modify the programs so that they would run efficiently. Extraneous output lines were

27

“commented out” of the listing; the “do” loop controlling the interpolation calculations was placed
so that the entered data were used only once. Forward and Inverse were modified and compiled to
make one large program, but the process that likely took most of the time was the addition of
comment lines. This was done so that the coders could keep track of the modifications made.
Because Forward and Inverse were extensive, extensive comment lines had to be included in the
revised program. They were so extensive that it took a week to make the necessary alterations.

Table 3. The time necessary to write/modify codes so that they were able to calculate needed interpolation points.

Forward/Inverse (OS)
C++ Batch File MATLAB FORTRAN

Sphere (PS)
FORTRAN

Coding Time (days) 1 0.25 5 2

4.3 Special Problem

The attempts to calculate the interpolated points for the special problem (two points on the equator
separated by more than 179.2329 degrees but less than 180 degrees) are summarized in table 4.
All the software packages calculated a path that was on the equator. Only the C++ batch file froze
and refused to perform any computations. The remaining packages calculated interpolated points
along the equator. Further investigation of the FORTRAN source codes and the vintage of the
C++ code indicated a potential source for the problem with the C++ code. Comments in the
FORTRAN code showed several improvements, and “divide-by-zero” traps were introduced in
versions dating back to 1998. One of the reasons cited for including these traps was to avoid
program failure at near-antipodal conditions. The C++ code was available in 1995 and may not
have included the antipodal trap.

Table 4. Summary of the results for special problem outlined in section 3.2

Forward/Inverse (OS)
C++ Batch File MATLAB FORTRAN

Sphere (PS)
FORTRAN

Results No computation On equator On equator On equator

5. Conclusions

Conclusions fall into four categories. The categories are computation time for the OS versus the
PS models, accuracy for the PS model compared to the WGS84-based OS model, time needed to
modify and write the various OS- and PS-based codes, and how well the OS- and PS-based
programs managed the special problem outlined in section 3.2. The conclusions are presented
for each category.

28

5.1 Computation Time

For any platform and for any software package used, the time needed to calculate the interpolated
latitudes and longitudes for the WGS84-based models took anywhere from 1.5 times as long (as on
the Dell laptop) to 30 times as long (as on the ProGen laptop) as for the PS model. The software
package that came closest to matching the PS FORTRAN code was the FORTRAN listings of
Forward and Inverse provided by the NGS (11) modified and re-compiled into one code in such a
way as to minimize the computation time.

Although the OS model only took 1.5 times longer to do the calculations on the Dell laptop and
the Dell desktop computers using the modified NGS codes than with the PS FORTRAN code, we
believe that the more realistic comparison between these codes is the result from the ProGen laptop
computer (see table 2). Attempting to accurately measure times of less than 1 second is very
difficult with a stopwatch; making the measurements on the newer machines is somewhat less
reliable because the programs took less than 1 second to run. The results on the older ProGen
laptop were easier to measure because the programs took longer than 1 second to run on this
machine. Assuming that the results for processing speed can be linearly extracted to the newer,
faster machines and that the inconsistency of measurement increases with the machine speed, it is
not unreasonable to realize that the true ratio of the OS processing time to the PS processing time
could well be closer to 2.25.

5.2 Latitude and Longitude Accuracy

The greatest difference between any of the OS models and the PS model in interpolating a set of
latitudes and longitudes was 29 meters. This was for the 647-km separation of waypoints at about
40 degrees north latitude (see figure 19). One way to characterize these numbers is to note that the
ratio of the disagreement distance to the waypoint separation distance is less than 0.0044%—very
small indeed.

Another way is to see it in terms of EM propagation time: we will be concerned with a time
resolution of approximately 1 second for the connectivity software. Yet an EM wave can travel
29 meters in less than 97 nanoseconds—instantaneous compared to 1 second. For practical
applications, this is ignorable.

Another way to characterize the difference is in the additional free space attenuation between
stations that are 29 meters farther separated than we assume. If we have a sending and receiving
platform separated by 10 km of free space, then the free space distance attenuation will increase by
0.025 dB, which is very small compared to most phenomena that degrade communication signals.
Typical of these is insertion loss, which is typically 1 dB (5).

5.3 Code Writing and Code Modification Times

Table 3 outlines the time needed to write or adapt the codes needed to do the comparison for this
study. The shortest time needed was to use the MATLAB scripts: only one quarter of a day. The

29

next shortest time was for use of the C++ executable programs Forward and Inverse and to write a
few additional programs to modify the format of the input and output files so as to put them in a
useful format that Forward could read: one day. The next was to write the FORTRAN program
test.exe based on the PS model: two days. By far, the longest time required was to consolidate the
FORTRAN listings for Forward and Inverse: five days. The long time was needed to examine
and understand the programs and to make non-harmful modifications to minimize the computation
time. This was also because of the far more complex math needed to calculate the WGS84 OS
model than with the PS model. Note that the FORTRAN program based on the PS model was the
only code that was not based on the WGS84 OS model. For the OS models, the tendency was that
the more time spent on producing the code, the faster it ran.

5.4 The Special Problem of Section 3.2

As table 4 shows, none of the codes calculated the problem correctly. The MATLAB and
FORTRAN OS codes gave the same mistaken output as the PS FORTRAN code, while the C++
code simply did not run. It would be possible to have the Deployment Module (when faced with
two waypoints that are on the equator and separated by 180 to 179.2329 degrees of latitude) fix a
phantom waypoint between the two equatorial waypoints (as outlined in section 3.2) and then use
any of the processes outlined to interpolate latitude and longitude points from the first waypoint to
the phantom waypoint, then to the second waypoint.

6. Recommendations

We recommend that the PS model be used to interpolate the latitudes and longitudes for the snap-
shot points. The primary reason is that the computation time is much shorter. By the data in
table 2, it takes anywhere from 1.8 to 32 times longer to generate the same number of interpolated
points, depending on the process used to make the calculations with the WGS84 OS model. (For
the reasons outlined in section 5.1, we believe that the lower boundary is closer to 2.25 times.)
This study calculated the interpolation points for one platform between two waypoints. Performing
a genuine link study will require doing many waypoints for many platforms so that the impact of
the longer time will be magnified. The Deployment Module is the first of six modules to be
written, so we should strive to make the first module as computationally efficient as possible to
minimize the impact of inefficiencies that appear in any of the remaining modules.

The strongest argument for using the WGS84 OS-based software is that it is more accurate than the
PS model. The discourse of section 5.2 shows that for waypoints 647 km apart, the PS model will
be accurate enough. Yet doing past link budgets for moving platforms, waypoint separations are
likely to be less than 100 km apart (5). The comparison of the PS to the WGS84 OS for 100 km
shows a maximum disagreement of only 1 meter (see figure 19) for the most inaccurate latitude
surveyed in the present work. Lower and higher latitudes agree even more (see figures 20 and 21).

30

The DTED (from which the Deployment Module will be drawing its elevation data) Level 1
specifies a linear error of less than 30 meters and a horizontal accuracy of less than 50 meters at
least 90% of the time (1). Level 2 is even more restrictive than level 1, requiring a linear error of
less than 18 meters, and a horizontal error of less than 23 meters at least 90% of the time (1). For
waypoint distances of 100 km or less, the PS has surpassed the Level 1 and Level 2 DTED
specifications.

Other arguments in favor of using the WGS84 OS models point to the coding time saved in using
software that has already been written. Table 3 indicates that the time needed to apply the codes
Forward and Inverse for MATLAB (0.25 day), and C++ (1 day) was indeed less than the time
needed to write the PS FORTRAN code (2 days). However, these two codes required 6 and 10
times longer to run on the Dell desktop (see table 2), more than outweighing the coding time
advantage. Modifying the FORTRAN OS program to cause it to run faster increased the coding
time dramatically (5 days). The WGS84-based FORTRAN code still took about twice as long as
the PS FORTRAN code to do the calculation. Further modification of the WGS84-based code to
improve the computation time would require even more coding time, which has already exceeded
the coding time for the PS FORTRAN code. Investing more coding to improve calculation time
for the WGS84-based computer programs is a losing proposition.

Finally, if any difficulty should arise in the development of the next modules, which requires
detailed knowledge of the interpolation process used in the Deployment Module, there is no one in
the group who has a detailed understanding of how to calculate great circle snapshot points using
the OS model. In contrast, a team member wrote the PS-based FORTRAN code for this study and
has used the PS model in past link budget analyses (5).

31

7. References

1. Web site: http://www.mission-planning.com/DTED_Part2.htm June 28, 2007.

2. Web site: http://en.wikipedia.org/wiki/ED50 June 29, 2007.

3. Web site: http://en.wikipedia.org/wiki/Spherical_Earth (June 7, 2007).

4. Web site: http://www.ngs.noaa.gov/PC_PROD/Inv_Fwd/ June 29, 2007.

5. Bevec, A.; Still, G. W. WIN-T Link Budget Analysis for the Ground to Unmanned Aerial
Vehicles (U); Unpublished Document; U.S. Army Research Laboratory: Aberdeen Proving
Ground, MD, September 2005 (SECRET).

6. Web site: http://en.wikipedia.org/wiki/WGS84 (June 7, 2007)

7. Web site: http://en.wikipedia.org/wiki/Figure_of_the_Earth (June 7, 2007)

8. Web site: http://mathworld.wolfram.com/OblateSpheroid.html (June 7, 2007)

9. Web site: http://mathforum.org/dr.math/faq/formulas/faq. ellipse.circumference.html (June
11, 2007)

10. Vincenty, T. Direct and Inverse Soloutions of Geodesics on the Ellipsoid with Application
of Nested Equations, Survey Review April 1975, XXII (176), 88-93.

11. Web site: http://www.ngs.noaa.gov/TOOLS/Inv_Fwd/Inv_ Fwd.html (June 11, 2007)

12. Web site: http://en.wikipedia.org/wiki/Great_circle, September 11, 2007.

13. Web site: http://en.wikipedia.org/wiki/Rhumb_line, September 11, 2007.

14. U.S. Army Toporaphic Engineering Center. REUSER’s Manual, page 2, REUSERS.DOC,
August 12, 1996.

15. Web site: http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectId=10821&ref=rssfeed&id=mostDownloadedFiles, June 18,
2007.

16. Web site: http://www.mathworks.com/MATLABcentral/
fileexchange/loadFile.do?objectId=5379&objectType=file, June 18, 2007.

17. Web site: http://www.ngs.noaa.gov/TOOLS/Inv_Fwd/Inv_ Fwd.html June 18, 2007.

18. Leithold, L. The Calculus with Analytic Geometry Third Edition, pp 433-434, 736; Harper
& Row Publishers: New York, 1976.

32

19. Sears, F. W.; Zemansky, M. W.; Young, H. D. Fifth Edition University Physics, Pages 204-
205; Addison-Wesley Publishing Company: Reading. MA, March 1977.

20. Web site: http://en.wikipedia.org/wiki/Pythagorean_ theorem, December 10, 2007.

21. Web site: http://williams.best.vwh.net/ellipsoid/ node1.html, December 10, 2007.

22. Web site: http://www.analyzemath.com/EllipseEq/ EllipseEq.html, December 10, 2007.

33

Appendix A. Listing of the Contents of the File Way.dat.

 Lat.(d m s) Long.(d m s) Altitude(m) Time(s)
 039 52 36.40 048 47 54.24 00000.00000000000 000000.0000000000
 039 09 09.72 041 18 37.08 00000.00000000000 064717.8518900000

34

INTENTIONALLY LEFT BLANK

35

Appendix B. Listing of the Contents of the File Way1.crd.

COORD_FMT DMS
LON_FMT 360
ACCURACY .01_SECOND
ELLIPSOID WE
LATITUDE_FROM 39 52 36.40 N
LONGITUDE_FROM 48 47 54.24 E
LATITUDE_TO 39 9 9.72 N
LONGITUDE_TO 41 18 37.08 E
CONVERT
;

36

INTENTIONALLY LEFT BLANK

37

Appendix C. Listing of the Contents of the File Way1.out.

; COORD_FMT DMS
; LON_FMT 360
; ACCURACY .01_SECOND
; ELLIPSOID WE

ELLIPSOID : WGS 84
INPUT
===
==========
FROM LATITUDE FROM LONGITUDE TO LATITUDE TO LONGITUDE
===
==========
39 52 36.40 N 048 47 54.24 E 39 09 9.72 N 041 18 37.08 E

OUTPUT
===
==========
FORWARD AZIMUTH BACK AZIMUTH DISTANCE
===
==========
265 16 41.91 080 30 34.76 648742

38

INTENTIONALLY LEFT BLANK

39

Appendix D. Partial Listing of the Contents of the File Snap1.crd.

COORD_FMT DMS
LON_FMT 360
ACCURACY .01_SECOND
ELLIPSOID WE
LATITUDE 39 52 36.40 N
LONGITUDE 48 47 54.24 E
AZIMUTH 265 16 41.91
DISTANCE 0
CONVERT
;
COORD_FMT DMS
LON_FMT 360
ACCURACY .01_SECOND
ELLIPSOID WE
LATITUDE 39 52 36.40 N
LONGITUDE 48 47 54.24 E
AZIMUTH 265 16 41.91
DISTANCE 0
CONVERT
;
COORD_FMT DMS
LON_FMT 360
ACCURACY .01_SECOND
ELLIPSOID WE
LATITUDE 39 52 36.40 N
LONGITUDE 48 47 54.24 E
AZIMUTH 265 16 41.91
DISTANCE 0
CONVERT
;
COORD_FMT DMS
LON_FMT 360
ACCURACY .01_SECOND
ELLIPSOID WE
LATITUDE 39 52 36.40 N
LONGITUDE 48 47 54.24 E
AZIMUTH 265 16 41.91
DISTANCE 0
CONVERT
;
.
.

40

INTENTIONALLY LEFT BLANK

41

Appendix E. Partial Listing of the Contents of the File Snap1.out.

; COORD_FMT DMS
; LON_FMT 360
; ACCURACY .01_SECOND
; ELLIPSOID WE
; DISTANCE 0

ELLIPSOID : WGS 84
===
==========
STATION LATITUDE LONGITUDE AZIMUTH DISTANCE
===
==========
FROM STATION 39 52 36.40 N 048 47 54.24 E 265 16 41.91 0
TO STATION 39 52 36.40 N 048 47 54.24 E 085 16 41.91

; ;
; COORD_FMT DMS
; LON_FMT 360
; ACCURACY .01_SECOND
; ELLIPSOID WE
; DISTANCE 0

ELLIPSOID : WGS 84
===
==========
STATION LATITUDE LONGITUDE AZIMUTH DISTANCE
===
==========
FROM STATION 39 52 36.40 N 048 47 54.24 E 265 16 41.91 0
TO STATION 39 52 36.40 N 048 47 54.24 E 085 16 41.91

; ;
.
.
.
.
.
.
.
.

42

INTENTIONALLY LEFT BLANK

43

Appendix F. Partial Listing of the Contents of the File Snap2.out.

Lat.(d m s) Long.(d m s) Altitude(m) Time(s)
 39 9 9.72 41 18 37.08 .00000000000 .0000000000
 39 9 9.72 41 18 37.08 .00000000000 10.0000000000
 39 9 9.72 41 18 37.08 .00000000000 20.0000000000
 39 9 9.72 41 18 37.08 .00000000000 30.0000000000
 39 9 9.72 41 18 37.08 .00000000000 40.0000000000
 39 9 9.72 41 18 37.08 .00000000000 50.0000000000
 39 9 9.72 41 18 37.08 .00000000000 60.0000000000
 39 9 9.72 41 18 37.08 .00000000000 70.0000000000
 39 9 9.73 41 18 37.12 .00000000000 80.0000000000
 39 9 9.73 41 18 37.12 .00000000000 90.0000000000
 39 9 9.73 41 18 37.12 .00000000000 100.0000000000
 39 9 9.73 41 18 37.12 .00000000000 110.0000000000
 39 9 9.73 41 18 37.12 .00000000000 120.0000000000
 39 9 9.73 41 18 37.16 .00000000000 130.0000000000
 39 9 9.73 41 18 37.16 .00000000000 140.0000000000
 39 9 9.73 41 18 37.16 .00000000000 150.0000000000
 39 9 9.74 41 18 37.20 .00000000000 160.0000000000
 39 9 9.74 41 18 37.20 .00000000000 170.0000000000
 39 9 9.74 41 18 37.20 .00000000000 180.0000000000
 39 9 9.74 41 18 37.24 .00000000000 190.0000000000
 39 9 9.74 41 18 37.24 .00000000000 200.0000000000
 39 9 9.74 41 18 37.24 .00000000000 210.0000000000
 39 9 9.75 41 18 37.29 .00000000000 220.0000000000
 39 9 9.75 41 18 37.29 .00000000000 230.0000000000
 39 9 9.75 41 18 37.33 .00000000000 240.0000000000
 39 9 9.75 41 18 37.33 .00000000000 250.0000000000
 39 9 9.76 41 18 37.37 .00000000000 260.0000000000
 39 9 9.76 41 18 37.37 .00000000000 270.0000000000
 39 9 9.76 41 18 37.41 .00000000000 280.0000000000
 39 9 9.76 41 18 37.41 .00000000000 290.0000000000
 39 9 9.77 41 18 37.45 .00000000000 300.0000000000
 39 9 9.77 41 18 37.49 .00000000000 310.0000000000
 39 9 9.77 41 18 37.49 .00000000000 320.0000000000
 39 9 9.78 41 18 37.53 .00000000000 330.0000000000
 39 9 9.78 41 18 37.57 .00000000000 340.0000000000
 39 9 9.78 41 18 37.57 .00000000000 350.0000000000
 39 9 9.79 41 18 37.61 .00000000000 360.0000000000
 39 9 9.79 41 18 37.66 .00000000000 370.0000000000
 39 9 9.79 41 18 37.66 .00000000000 380.0000000000
 39 9 9.80 41 18 37.70 .00000000000 390.0000000000
.

44

INTENTIONALLY LEFT BLANK

45

Acronyms

2-D Two dimensional

3-D Three dimensional

APG Aberdeen Proving Ground

ARL Army Research Laboratory

ASCII American Standard Code for Information Interchange

DTED Digital Terrain Elevation Data

EM electromagnetic

EW electromagnetic warfare

FORTRAN Formula Translator

IEPD Information & Electronic Protection Division

MATLAB Matrix Laboratory

NGS National Geodetic Survey

OS oblate spheroid

PS perfect sphere

SLAD Survivability/Lethality Analysis Directorate

S/N signal to noise (ratio)

WGS84 World Geodetic System 1984

TEC Topographic Engineering Center

46

NO. OF
COPIES ORGANIZATION

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV & ENGRG CMD
 SYSTEMS OF SYSTEMS INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 2 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS OK T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 US ARMY RSCH LAB
 ATTN AMSRD ARL SL EG L ANDERSON
 WSMR NM 88002-5502

 2 US ARMY RSCH LAB
 ATTN AMSRD ARL SL E R FLORES
 AMSRD ARL SL EM T MCDONALD
 WSMR NM 88002-5513

 5 US ARMY RSCH LAB
 ATTN AMSRD ARL SL EW P BOTHNER
 FORT MONMOUTH NJ 07703-5602

 1 US ARMY RDECOM/TARDEC
 ATTN S CAMPBELL MS 263
 6501 E 11 MILE ROAD
 WARREN MI 48397-5000

NO. OF
COPIES ORGANIZATION

 ABERDEEN PROVING GROUND

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK (TECH LIB)
 BLDG 4600

 6 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL SL D BAYLOR
 J BEILFUSS J FRANZ
 J FEENEY M STARKS
 P TANENBAUM
 BLDG 328

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL SL BE L ROACH
 BLDG 328

 6 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL SL EM J NEALON
 G W STILL (5 CYS)
 BLDG 309A

